CMPS 211
Spring 2007-2008

Solutions for Suggested Problems

Chapter 3
(Part 2)

Section 3.1
6-
procedure numNegative  (a1, a2, …, an: integers)

count := 0


for i := 1 to n


     if ai < 0 then count := count + 1

{count has the desired value}
10-
procedure powerNonNeg  (x: real; n: positive integer)

power := 1



for i := 1 to n


     power := power ( x

{power has the desired value, and this is a subprocedure being called by another}
procedure power  (x:real; n: integer)

power := powerNonNeg (x, absValue(n))


if n < 0 then power := 1 / power

{power has the desired value, for all negative and nonnegative powers}
18-
procedure lastSmallest  (a1, a2, …, an: integers)

smallest := a1



smallestLoc := 1


for i := 2 to n


     if ai ( smallest then 

     begin 

smallest := ai

smallestLoc := i

      end

{smallestLoc has the desired value}

32-
procedure greaterTerms  (s1, s2, …, sn: integers)

sum := s1

termList := {}

for i := 2 to n


     if ai > sum then termList := termList ( si

     sum := sum + si

{termList has the desired set}

42-
procedure selectionSort  (a1, a2, …, an: real numbers)

for i := 1 to n-1


begin
     min := ai


     minIndex := i
     for j := i+1 to n



if aj < min then 
begin


     min := aj



     minIndex := j


end


     temp := ai

     ai := aminIndex

     aminIndex := temp

end
{ a1, a2, …, an are sorted}

50-
a)

procedure insertionSort  (a1, a2, …, an: real numbers)

for j := 2 to n

begin
     
     i := 1 

     while aj < ai


i := i + 1

     m := aj

     for k := 0 to j - i - 1 


aj-k := aj-k -1 

     
     ai := m

end
{a1, a2, …, an are sorted}

procedure varInsertionSort  (a1, a2, …, an: real numbers)

for j := n down to 2

begin
     
     i := j-1 

     while aj < ai


i := i - 1

     m := aj

     for k := 0 to j - i - 1 



aj-k := aj-k -1 

     
     ai := m

end
{a1, a2, …, an are sorted}


b)  Sort 3, 2, 4, 5, 1, 6


     Compare 6 with 1, replace 6 with itself at the same location ( 3, 2, 4, 5, 1, 6


     Compare 1 with 5, 4, 2, 3, replace 1 with 
3

     ( 1, 3, 2, 4, 5, 6 


     Compare 4 with 4, replace 5 with itself at the same location ( 1, 3, 2, 4, 5, 6 


     Compare 2 with 3, 1, replace 2 with 3

  
     ( 1, 2, 3, 4, 5, 6 


     Compare 2 with 1, replace 2 with itself at the same location ( 1, 2, 3, 4, 5, 6 

c)  The number of comparisons is = 1 + 1 + … + 1  + 1 = n-1

d)  The number of comparisons is = (n-1) + (n-2) + … + 2  + 1 = n(n-1) / 2 
Section 3.2
8-
a)  f(x) = 2x2 + x3 log x

    2x2 ( x4
for x > 1


    x3   ( x3
for x > 1


    log x < x
for x > 1
    ( 2x2 + x3 log x < x4 + (x3)(x) = x4 + x4 = 2x4
    ( f(x)  = ( (x4)  for c = 2 and x > 1
c)  f(x) = 
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for x > 1
(

[image: image2.wmf]1

1

4

+

x

(  x4

for x > 1
(  
[image: image3.wmf]1

1

4

2

4

+

+

+

x

x

x

  (  
[image: image4.wmf]4

4

3

x

x

= 3
( f(x)  = ( (x 0 ) =  ( (1 )   for c = 3 and x > 1
12-
Show x log x = ( (x2).
      log x  (  x



for x > 1

(  x log x  (  x2


for x > 1

( f(x)  = ( (x 2 )


for c = 1 and x > 1

Show x2 ( ( (x log x).

Want to show that there doesn’t exist a pair of c and k to satisfy the equation

 x2  (  c x log x

and x > k 

Since x is positive, we can divide both sides of the inequality by x, then

 x   (  c log x

and x > k
but there are no values of c and k to satisfy this inequality.
( x2 ( ( (x log x).

18-
Show that 1k + 2k + … + nk = ( (n k+1 )
1k  (  nk


for n ( 1

2k  (  nk


for n ( 1
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for n ( 1

( 1k + 2k + … + nk  (  nk + nk + … + nk 
(n times)

( 1k + 2k + … + nk  (  n ( nk ) = nk+1
( 1k + 2k + … + nk  = ( (n k+1 )

for c = 1, n ( 1 and k > 0
24-
a)  Show 3x + 7 = ( (x).

     1.
3x + 7 ( 4x  since 7 (  x for x > 7    (    3x + 7 = ( (x)
for x > 7

     2.
x ( 3x + 7    since x is positive        (     x = ( (3x + 7)
for x > 0

     (
3x + 7 = ( (x)

for x > 7.
c)  Show (x + 1/2( = ( (x).


     1.
(x + 1/2( ( x + 1
(
(x + 1/2( = ( (x)

for x > 1

     2.
x-1 ( (x + 1/2(
 since x-1 ( (x + 1/2( ( x +1  ( x = ( ((x + 1/2()   for x > 1

     (
(x + 1/2( = ( (x)





for x > 1.
e)  Show log10  x = ( (log2  x).

     1.
log10  x  =  
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     2.
log2  x    =  
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     (
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for x > 1.
40-
f1(x) = ( (g1(x)) and f2(x) = ( (g2(x)); show that (f1 f2)(x) = ( (g1g2(x)).

f1(x) = ( (g1(x))
(
f1(x) = ( (g1(x)) and f1(x) = ( (g1(x))

f2(x) = ( (g2(x))
(
f2(x) = ( (g2(x)) and f2(x) = ( (g2(x))

By Theorem 3,   f1(x) = ( (g1(x))   and   f2(x) = ( (g2(x)) 

implies 
  (f1 f2)(x) = ( (g1g2(x)).

The same proof can be applied to show that if f1(x) = ( (g1(x)) and 

f2(x) = ( (g2(x)), then (f1 f2)(x) = ( (g1g2(x)).

Since  (f1 f2)(x) = ( (g1g2(x)) and (f1 f2)(x) = ( (g1g2(x)), then by the definition of “big-theta”, (f1 f2)(x) = ( (g1g2(x)).

Section 3.3
4-
To find 
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by successive squaring requires k+1 multiplications.


To find 
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by multiplying x by itself requires 2k multiplications.


The first approach is naturally more efficient.


8-
a)  Evaluating 
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 at x = 2:


     Input: c = 2, a0 = 1, a1 = 1, a2 = 3.
0. y = 3



initialization of y
1. i = 1, y = 3(2 + 1 = 7

first iteration in for loop

2. i = 2, y = 7(2 + 1 = 15

second iteration in for loop

  Final Answer: y = 15

b) In each iteration of the for loop, one multiplication and one addition are used, 

so the total number of multiplications and additions in the algorithm is n multiplications and n additions.

12-
a)  To find the maximum of a sequence of n integers: 

always requires n-1 comparisons; traverse list from 2 to n, comparing at each iteration
b) To locate an element in a list of n terms with linear search:

Least number of comparisons is 1; occurs if the element to be located is the first element in the list

c) To locate an element in a list of n terms with binary search:

Least number of comparisons is 1; occurs if the element to be located is the first element inspected, i.e. the middle element in the list
20-
procedure greaterTerms  (s1, s2, …, sn: integers)

sum := s1

termList := {}

for i := 2 to n


     if ai > sum then termList := termList ( si

     sum := sum + si

{termList has the desired set}

The procedure developed in this exercise traverses the entire list, comparing each term with the sum of the previous terms. It performs n-1 iterations in the for loop and n-1 comparisons ( worst-case time complexity = O (n).

24-
procedure selectionSort  (a1, a2, …, an: real numbers)

for i := 1 to n-1


begin
     min := ai


     minIndex := i
     for j := i+1 to n



if aj < min then 
begin


     min := aj



     minIndex := j


end


     temp := ai

     ai := aminIndex

     aminIndex := temp

end
{ a1, a2, …, an are sorted}

The procedure developed contains a nested for loop, where the outer loop iterates n-1 times, while the inner one is repeated n-i for every iteration of the outer loop. In  each such iteration, a single comparison operation is used. So the total number of comparisons is computed by this summation:
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