CMPS 211
Spring 2007-2008

Solutions for Suggested Problems

Chapter 3
(Part 2)

Section 3.1
6-
procedure numNegative (a1, a2, …, an: integers)

count := 0

for i := 1 to n

 if ai < 0 then count := count + 1

{count has the desired value}
10-
procedure powerNonNeg (x: real; n: positive integer)

power := 1

for i := 1 to n

 power := power (x

{power has the desired value, and this is a subprocedure being called by another}
procedure power (x:real; n: integer)

power := powerNonNeg (x, absValue(n))

if n < 0 then power := 1 / power

{power has the desired value, for all negative and nonnegative powers}
18-
procedure lastSmallest (a1, a2, …, an: integers)

smallest := a1

smallestLoc := 1

for i := 2 to n

 if ai (smallest then

 begin

smallest := ai

smallestLoc := i

 end

{smallestLoc has the desired value}

32-
procedure greaterTerms (s1, s2, …, sn: integers)

sum := s1

termList := {}

for i := 2 to n

 if ai > sum then termList := termList (si

 sum := sum + si

{termList has the desired set}

42-
procedure selectionSort (a1, a2, …, an: real numbers)

for i := 1 to n-1

begin
 min := ai

 minIndex := i
 for j := i+1 to n

if aj < min then
begin

 min := aj

 minIndex := j

end

 temp := ai

 ai := aminIndex

 aminIndex := temp

end
{ a1, a2, …, an are sorted}

50-
a)

procedure insertionSort (a1, a2, …, an: real numbers)

for j := 2 to n

begin

 i := 1

 while aj < ai

i := i + 1

 m := aj

 for k := 0 to j - i - 1

aj-k := aj-k -1

 ai := m

end
{a1, a2, …, an are sorted}

procedure varInsertionSort (a1, a2, …, an: real numbers)

for j := n down to 2

begin

 i := j-1

 while aj < ai

i := i - 1

 m := aj

 for k := 0 to j - i - 1

aj-k := aj-k -1

 ai := m

end
{a1, a2, …, an are sorted}

b) Sort 3, 2, 4, 5, 1, 6

 Compare 6 with 1, replace 6 with itself at the same location (3, 2, 4, 5, 1, 6

 Compare 1 with 5, 4, 2, 3, replace 1 with
3

 (1, 3, 2, 4, 5, 6

 Compare 4 with 4, replace 5 with itself at the same location (1, 3, 2, 4, 5, 6

 Compare 2 with 3, 1, replace 2 with 3

 (1, 2, 3, 4, 5, 6

 Compare 2 with 1, replace 2 with itself at the same location (1, 2, 3, 4, 5, 6

c) The number of comparisons is = 1 + 1 + … + 1 + 1 = n-1

d) The number of comparisons is = (n-1) + (n-2) + … + 2 + 1 = n(n-1) / 2
Section 3.2
8-
a) f(x) = 2x2 + x3 log x

 2x2 (x4
for x > 1

 x3 (x3
for x > 1

 log x < x
for x > 1
 (2x2 + x3 log x < x4 + (x3)(x) = x4 + x4 = 2x4
 (f(x) = ((x4) for c = 2 and x > 1
c) f(x) =
[image: image1.wmf]1

1

4

2

4

+

+

+

x

x

x

 x4 + x2 + 1 (x4 + x4 + x4 = 3 x4

for x > 1

x4 + 1 (x -4
for x > 1
(

[image: image2.wmf]1

1

4

+

x

(x4

for x > 1
(
[image: image3.wmf]1

1

4

2

4

+

+

+

x

x

x

 (
[image: image4.wmf]4

4

3

x

x

= 3
(f(x) = ((x 0) = ((1) for c = 3 and x > 1
12-
Show x log x = ((x2).
 log x (x

for x > 1

(x log x (x2

for x > 1

(f(x) = ((x 2)

for c = 1 and x > 1

Show x2 (((x log x).

Want to show that there doesn’t exist a pair of c and k to satisfy the equation

 x2 (c x log x

and x > k

Since x is positive, we can divide both sides of the inequality by x, then

 x (c log x

and x > k
but there are no values of c and k to satisfy this inequality.
(x2 (((x log x).

18-
Show that 1k + 2k + … + nk = ((n k+1)
1k (nk

for n (1

2k (nk

for n (1

[image: image5.wmf]M

nk (nk

for n (1

(1k + 2k + … + nk (nk + nk + … + nk
(n times)

(1k + 2k + … + nk (n (nk) = nk+1
(1k + 2k + … + nk = ((n k+1)

for c = 1, n (1 and k > 0
24-
a) Show 3x + 7 = ((x).

 1.
3x + 7 (4x since 7 (x for x > 7 (3x + 7 = ((x)
for x > 7

 2.
x (3x + 7 since x is positive (x = ((3x + 7)
for x > 0

 (
3x + 7 = ((x)

for x > 7.
c) Show (x + 1/2(= ((x).

 1.
(x + 1/2((x + 1
(
(x + 1/2(= ((x)

for x > 1

 2.
x-1 ((x + 1/2(
 since x-1 ((x + 1/2((x +1 (x = (((x + 1/2() for x > 1

 (
(x + 1/2(= ((x)

for x > 1.
e) Show log10 x = ((log2 x).

 1.
log10 x =
[image: image6.wmf]10

log

log

x

 = ((log x)

for x > 1

 2.
log2 x =
[image: image7.wmf]2

log

log

x

 = ((log x)

for x > 1

 (
log10 x = ((log2 x)

for x > 1.
40-
f1(x) = ((g1(x)) and f2(x) = ((g2(x)); show that (f1 f2)(x) = ((g1g2(x)).

f1(x) = ((g1(x))
(
f1(x) = ((g1(x)) and f1(x) = ((g1(x))

f2(x) = ((g2(x))
(
f2(x) = ((g2(x)) and f2(x) = ((g2(x))

By Theorem 3, f1(x) = ((g1(x)) and f2(x) = ((g2(x))

implies
 (f1 f2)(x) = ((g1g2(x)).

The same proof can be applied to show that if f1(x) = ((g1(x)) and

f2(x) = ((g2(x)), then (f1 f2)(x) = ((g1g2(x)).

Since (f1 f2)(x) = ((g1g2(x)) and (f1 f2)(x) = ((g1g2(x)), then by the definition of “big-theta”, (f1 f2)(x) = ((g1g2(x)).

Section 3.3
4-
To find
[image: image8.wmf]k

x

2

by successive squaring requires k+1 multiplications.

To find
[image: image9.wmf]k

x

2

by multiplying x by itself requires 2k multiplications.

The first approach is naturally more efficient.

8-
a) Evaluating
[image: image10.wmf]1

3

2

+

+

x

x

 at x = 2:

 Input: c = 2, a0 = 1, a1 = 1, a2 = 3.
0. y = 3

initialization of y
1. i = 1, y = 3(2 + 1 = 7

first iteration in for loop

2. i = 2, y = 7(2 + 1 = 15

second iteration in for loop

 Final Answer: y = 15

b) In each iteration of the for loop, one multiplication and one addition are used,

so the total number of multiplications and additions in the algorithm is n multiplications and n additions.

12-
a) To find the maximum of a sequence of n integers:

always requires n-1 comparisons; traverse list from 2 to n, comparing at each iteration
b) To locate an element in a list of n terms with linear search:

Least number of comparisons is 1; occurs if the element to be located is the first element in the list

c) To locate an element in a list of n terms with binary search:

Least number of comparisons is 1; occurs if the element to be located is the first element inspected, i.e. the middle element in the list
20-
procedure greaterTerms (s1, s2, …, sn: integers)

sum := s1

termList := {}

for i := 2 to n

 if ai > sum then termList := termList (si

 sum := sum + si

{termList has the desired set}

The procedure developed in this exercise traverses the entire list, comparing each term with the sum of the previous terms. It performs n-1 iterations in the for loop and n-1 comparisons (worst-case time complexity = O (n).

24-
procedure selectionSort (a1, a2, …, an: real numbers)

for i := 1 to n-1

begin
 min := ai

 minIndex := i
 for j := i+1 to n

if aj < min then
begin

 min := aj

 minIndex := j

end

 temp := ai

 ai := aminIndex

 aminIndex := temp

end
{ a1, a2, …, an are sorted}

The procedure developed contains a nested for loop, where the outer loop iterates n-1 times, while the inner one is repeated n-i for every iteration of the outer loop. In each such iteration, a single comparison operation is used. So the total number of comparisons is computed by this summation:

[image: image11.wmf])

(

2

2

)

1

(

)

(

1

2

2

1

0

1

1

1

1

1

1

1

n

complexity

Time

n

n

n

n

i

i

i

n

n

i

n

i

n

i

n

i

n

i

O

=

Þ

-

=

-

=

=

=

-

=

å

å

å

å

å

-

=

-

=

-

=

-

=

+

_1270127334.unknown

_1270135322.unknown

_1270324778.unknown

_1270329064.unknown

_1270323467.unknown

_1270135135.unknown

_1269953595.unknown

_1269953656.unknown

_1269953430.unknown

